Frameworks to Encode User Preferences for Inferring Topic-sensitive Information Networks

نویسندگان

  • Qingbo Hu
  • Sihong Xie
  • Shuyang Lin
  • Wei Fan
  • Philip S. Yu
چکیده

The connection between online users is the key to the success of many important applications, such as viral marketing. In reality, we often easily observe the time when each user in the network receives a message, yet the users’ connections that empower the message diffusion remain hidden. Therefore, given the traces of disseminated messages, recent research has extensively studied approaches to uncover the underlying diffusion network. Since topic related information could assist the network inference, previous methods incorporated either users’ preferences over topics or the topic distributions of cascading messages. However, methods combining both of them may lead to more accurate results, because they consider a more comprehensive range of available information. In this paper, we investigate this possibility by exploring two principled methods: Weighted Topic Cascade (WTC) and Preference-enhanced Topic Cascade (PTC). WTC and PTC formulate the network inference task as non-smooth convex optimization problems and adopt coordinate proximal gradient descent to solve them. Based on synthetic and real datasets, substantial experiments demonstrate that although WTC is better than several previous approaches in most cases, it is less stable than PTC, which constantly outperforms other baselines with an improvement of 4%∼10% in terms of the F-measure of inferred networks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A social recommender system based on matrix factorization considering dynamics of user preferences

With the expansion of social networks, the use of recommender systems in these networks has attracted considerable attention. Recommender systems have become an important tool for alleviating the information that overload problem of users by providing personalized recommendations to a user who might like based on past preferences or observed behavior about one or various items. In these systems...

متن کامل

Prediction of user's trustworthiness in web-based social networks via text mining

In Social networks, users need a proper estimation of trust in others to be able to initialize reliable relationships. Some trust evaluation mechanisms have been offered, which use direct ratings to calculate or propagate trust values. However, in some web-based social networks where users only have binary relationships, there is no direct rating available. Therefore, a new method is required t...

متن کامل

CPrefMiner: A Bayesian Miner of Conditional Preferences

Customizing database queries through the use of user preferences is a research topic that has been raising a lot of interest within the database community in recent years. Such preferences are used for sorting and selecting the best tuples, those which most fulfill the user wishes. A topic of interest within this context is the elicitation of preferences, consisting of methods to enable the use...

متن کامل

Improving Accuracy of Recommender Systems using Social Network Information and Longitudinal Data

The rapid development of technology, the Internet, and the development of electronic commerce have led to the emergence of recommender systems. These systems will assist the users in finding and selecting their desired items. The accuracy of the advice in recommender systems is one of the main challenges of these systems. Regarding the fuzzy systems capabilities in determining the borders of us...

متن کامل

Developing a Recommendation Framework for Tourist by Mining Geo-tag Photos (Case Study Tehran District 6)

With the increasing popularity of sharing media on social networks and facilitating access to location technologies, such as Global Positioning System (GPS), people are more interested to share their own photos and videos. The world wide web users are no longer the sole consumer but they are producers of information also, hence a wealth of information are available on web 2.0 applications. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015